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The phleomycins (PLM) were isolated from Streptomyces 
verticillus in 1956.' Their promising antitumor properties2 

prompted a search for related species, which led to the discovery 
of the bleomycins (BLM).3 These families of compounds are 
closely related structurally (Figure I);4 they are thought to be 
biosynthesized via a common pathway.5 

As shown for BLM, PLM also forms complexes with redox-
active metal ions such as Fe, Co, and Cu.lb'6'7 Following reductive 
activation in the presence of O2, the Fe and Co complexes have 
been shown to mediate the oxidative destruction of DNA.6 The 
DNA cleavage selectivities of PLM and BLM were remarkably 
similar,6 in spite of the evidence that their C-terminal domains 
may interact with DNA by different mechanisms. BLM, which 
has a planar bithiazole moiety, has been shown to unwind DNA7-9 

and cause DNA helix elongation7'8 and has been postulated to 
be a (partial) intercalator.7'8-10 In contrast, PLM contains a 
thiazolinylthiazole moiety whose sp3 center must preclude 
intercalation.11 It seems likely that PLM binds to the minor 
groove of DNA, which is the site of DNA damage.12 Thus the 
presence of the chiral center in the DNA binding domain would 
seem to alter the strategy by which the antibiotic binds to DNA, 
but a detailed analysis of the nature of this interaction has been 
hindered by the absence of an assignment for the stereochemistry 
of the chiral sp3 carbon atom in the thiazolinylthiazole moiety 
of PLM. Presently, we establish the absolute configuration of 
this center. 
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Figure 1. Structure of phleomycin Di, illustrating the R configuration 
of the newly established stereocenter (arrow). Also shown is a partial 
structure for bleomycin B2. 
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Figure 2. CD spectra of thiazole 2 derived from phleomycin (A), (,R)-I 
(B), and (S)-I (C). 

Because the absolute stereochemistry of the thiazolinylthiazole 
moiety could not be determined by NMR analysis,13 we developed 
a strategy involving chemical degradation of PLM to afford a 
fragment amenable to structural analysis.14 The proposed 
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Scheme I. Degradation of Phleomyein To Obtain a Chiral 
Fragment of the Thiazolinylthiazole Moiety" 
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0 (a) 4.5 N HCl; (b) 2,4-dinitrofluorobenzene; (c) CH2N2; (d) 5.5 N 
HCl. 

transformations are outlined in Scheme I. As shown, treatment 
of PLM with 5.5 N HCl (105 0C, 15 h) afforded putative i, which 
was treated successively with 2,4-dinitrofluorobenzene (K2CO3 
in 4:1 acetone-H20, 25 0C, 15 h) and CH2N2 to afford thiazole 
derivative 214b'c as a yellow solid, [a]25

D-40° (c0.02, CHCl3).
15-16 

As shown in Figure 2, the CD spectrum of this sample of 2 
exhibited a negative Cotton effect at 360 nm. 
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13C-NMR resonances had essentially the same chemical shift values. 
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Analogous hydrolysis and derivatization of authentic (R)-
thiazolinylthiazole 1 (4.5 N HCl, 105 0C, 16 h) (Scheme I) also 
afforded a sample of thiazole methyl ester 2. This material was 
indistinguishable chemically from the sample derived from PLM 
and from authentic 2,17 and had a similar optical rotation ([a]25

D 
-45° (c 0.1, CHCl3))

16 and CD spectrum to the sample of 2 
derived from PLM (Figure 2). In comparison, the sample of 2 
derived from (S)-thiazolinylthiazole 1 (Scheme I) had [a] 25D + 
50° (c 0.1, CHCl3)

16 and had a CD spectrum with a positive 
Cotton effect at 360 nm. On this basis the chiral center in the 
thiazolinylthiazole moiety of PLM can be assigned an R 
configuration. Establishment of the absolute stereochemistry of 
this center in PLM, as well as the elaboration of both isomers of 
the thiazolinylthiazole moiety as described herein, will allow 
experimental definition of the role that this structural element 
plays in PLM-DNA interactions. 

On the likely assumption that the thiazol(in)e moieties in PLM 
and BLM are biosynthesized from cysteinyl peptides,5 the cysteine 
that forms the asymmetric center in the thiazoline moiety of 
PLM must have the ?̂ configuration.19 
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